Probing molecular dynamics at the nanoscale via an individual paramagnetic centre
نویسندگان
چکیده
We demonstrate a protocol using individual nitrogen-vacancy centres in diamond to observe the time evolution of proton spins from organic molecules located a few nanometres from the diamond surface. The protocol records temporal correlations among the interacting protons, and thus is sensitive to the local dynamics via its impact on the nuclear spin relaxation and interaction with the nitrogen vacancy. We gather information on the nanoscale rotational and translational diffusion dynamics by analysing the time dependence of the nuclear magnetic resonance signal. Applying this technique to liquid and solid samples, we find evidence that liquid samples form a semi-solid layer of 1.5-nm thickness on the surface of diamond, where translational diffusion is suppressed while rotational diffusion remains present. Extensions of the present technique could be exploited to highlight the chemical composition of molecules tethered to the diamond surface or to investigate thermally or chemically activated dynamical processes such as molecular folding.
منابع مشابه
Molecular Dynamics Simulations of Freezing Behavior of Pure Water and 14% Water-NaCl Mixture Using the Coarse-Grained Model
We performed molecular dynamics simulations using the coarse-grained model to study the freezing behavior of pure water and 14% water-salt mixture in a wide range of temperatures for a very long time around 50 nanoseconds. For the salty water, an interface in nanoscale was used. For both systems, the f...
متن کاملProbing the Binding of Valacyclovir Hydrochloride to the Human Serum Albumin
UV-visible and Fluorescence spectroscopic methods were employed to study the interaction of human serum albumin (HSA) with Valacyclovir Hydrochloride. Additionally, molecular dynamics and molecular docking simulations were used to visualize and specify the binding site of Valacyclovir Hydrochloride. The Stern-Volmer and van't Hoff equations along with spectroscopic observations, were used to de...
متن کاملProbing Nanoscale Thermal Transport in Surfactant Solutions
Surfactant solutions typically feature tunable nanoscale, internal structures. Although rarely utilized, they can be a powerful platform for probing thermal transport in nanoscale domains and across interfaces with nanometer-size radius. Here, we examine the structure and thermal transport in solution of AOT (Dioctyl sodium sulfosuccinate) in n-octane liquids using small-angle neutron scatterin...
متن کاملNanoscale Studies on Aggregation Phenomena in Nanofluids
Understanding the microscopic dispersion and aggregation of nanoparticles at nanoscale media has become an important challenge during the last decades. Nanoscale modeling techniques are the important tools to tackle many of the complex problems faced by engineers and scientists. Making progress in the investigations at nanoscale whether experimentally or computationally has helped understand th...
متن کاملNanoscale methods for single-molecule electrochemistry.
The development of experiments capable of probing individual molecules has led to major breakthroughs in fields ranging from molecular electronics to biophysics, allowing direct tests of knowledge derived from macroscopic measurements and enabling new assays that probe population heterogeneities and internal molecular dynamics. Although still somewhat in their infancy, such methods are also bei...
متن کامل